首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A causal role for the cerebellum in semantic integration: a transcranial magnetic stimulation study
  • 本地全文:下载
  • 作者:Daniele Gatti ; Floris Van Vugt ; Tomaso Vecchi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-75287-z
  • 出版社:Springer Nature
  • 摘要:Mounting evidence suggests that the cerebellum, a structure previously linked to motor function, is also involved in a wide range of non-motor processes. It has been proposed that the cerebellum performs the same computational processes in both motor and non-motor domains. Within motor functions, the cerebellum is involved in the integration of signals from multiple systems. Here we hypothesized that cerebellum may be involved in integration within semantic memory as well. Specifically, understanding a noun-adjective combination (e.g. red apple) requires combining the meaning of the adjective (red) with the meaning of the noun (apple). In two experiments, participants were asked to judge whether noun-adjective word-pairs were semantically related (e.g., red apple) or not (e.g., lucky milk) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site (vertex in Experiment 1 and visual cortex in Experiment 2). Cerebellar TMS caused a decrease in participants’ accuracy for related word-pairs while accuracy for unrelated stimuli was not affected. A third experiment using a control task where subjects compared pairs of random letters showed no effect of TMS. Taken together these results indicate that the right cerebellum is involved specifically in the processing of semantically related stimuli. These results are consistent with theories that proposed the existence of a unified cerebellar function within motor and non-motor domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive cognition.
  • 其他摘要:Abstract Mounting evidence suggests that the cerebellum, a structure previously linked to motor function, is also involved in a wide range of non-motor processes. It has been proposed that the cerebellum performs the same computational processes in both motor and non-motor domains. Within motor functions, the cerebellum is involved in the integration of signals from multiple systems. Here we hypothesized that cerebellum may be involved in integration within semantic memory as well. Specifically, understanding a noun-adjective combination (e.g. red apple) requires combining the meaning of the adjective (red) with the meaning of the noun (apple). In two experiments, participants were asked to judge whether noun-adjective word-pairs were semantically related (e.g., red apple) or not (e.g., lucky milk) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site (vertex in Experiment 1 and visual cortex in Experiment 2). Cerebellar TMS caused a decrease in participants’ accuracy for related word-pairs while accuracy for unrelated stimuli was not affected. A third experiment using a control task where subjects compared pairs of random letters showed no effect of TMS. Taken together these results indicate that the right cerebellum is involved specifically in the processing of semantically related stimuli. These results are consistent with theories that proposed the existence of a unified cerebellar function within motor and non-motor domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive cognition.
国家哲学社会科学文献中心版权所有