摘要:With the development of digital technology, media multitasking behaviour, which is using two or more media simultaneously, has become more commonplace. There are two opposing hypotheses of media multitasking with regard to its impact on attention. One hypothesis claims that media multitasking can strengthen attention control, and the other claims heavy media multitaskers are less able to focus on relevant tasks in the presence of distractors. A total of 103 healthy subjects took part in this study. We measured the Media Multitasking Index (MMI) and subjects performed the continuous performance test. Resting state and oddball task functional MRI were conducted to analyse functional connectivity in the dorsal attention network, and the degree centrality (DC) was calculated using graph theory analysis. We found that the DCs in the dorsal attention network were higher during resting state than during the oddball task. Furthermore, the DCs during the task were positively correlated with the MMI. These results indicated that the DC reduction from resting state to the oddball task in high media multitaskers was attenuated compared with low media multitaskers. This study not only reveals more about the neurophysiology of media multitasking, but could also indicate brain biomarkers of media multitasking behaviour.
其他摘要:Abstract With the development of digital technology, media multitasking behaviour, which is using two or more media simultaneously, has become more commonplace. There are two opposing hypotheses of media multitasking with regard to its impact on attention. One hypothesis claims that media multitasking can strengthen attention control, and the other claims heavy media multitaskers are less able to focus on relevant tasks in the presence of distractors. A total of 103 healthy subjects took part in this study. We measured the Media Multitasking Index (MMI) and subjects performed the continuous performance test. Resting state and oddball task functional MRI were conducted to analyse functional connectivity in the dorsal attention network, and the degree centrality (DC) was calculated using graph theory analysis. We found that the DCs in the dorsal attention network were higher during resting state than during the oddball task. Furthermore, the DCs during the task were positively correlated with the MMI. These results indicated that the DC reduction from resting state to the oddball task in high media multitaskers was attenuated compared with low media multitaskers. This study not only reveals more about the neurophysiology of media multitasking, but could also indicate brain biomarkers of media multitasking behaviour.