首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Floquet-engineered quantum walks
  • 本地全文:下载
  • 作者:Haruna Katayama ; Noriyuki Hatakenaka ; Toshiyuki Fujii
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-74418-w
  • 出版社:Springer Nature
  • 摘要:The quantum walk is the quantum-mechanical analogue of the classical random walk, which offers an advanced tool for both simulating highly complex quantum systems and building quantum algorithms in a wide range of research areas. One prominent application is in computational models capable of performing any quantum computation, in which precisely controlled state transfer is required. It is, however, generally difficult to control the behavior of quantum walks due to stochastic processes. Here we unveil the walking mechanism based on its particle-wave duality and then present tailoring quantum walks using the walking mechanism (Floquet oscillations) under designed time-dependent coins, to manipulate the desired state on demand, as in universal quantum computation primitives. Our results open the path towards control of quantum walks.
  • 其他摘要:Abstract The quantum walk is the quantum-mechanical analogue of the classical random walk, which offers an advanced tool for both simulating highly complex quantum systems and building quantum algorithms in a wide range of research areas. One prominent application is in computational models capable of performing any quantum computation, in which precisely controlled state transfer is required. It is, however, generally difficult to control the behavior of quantum walks due to stochastic processes. Here we unveil the walking mechanism based on its particle-wave duality and then present tailoring quantum walks using the walking mechanism (Floquet oscillations) under designed time-dependent coins, to manipulate the desired state on demand, as in universal quantum computation primitives. Our results open the path towards control of quantum walks.
国家哲学社会科学文献中心版权所有