摘要:Diabetes has become a universal epidemic in recent years. Herein, the monitoring of glucose in blood is of importance in clinical applications. In this work, PtNi alloy nanoparticles homogeneously dispersed on graphene (PtNi alloy-graphene) was synthesized as a highly effective electrode material for glucose detection. Based on the modified PtNi alloy-graphene/glass carbon (PtNi alloy-graphene/GC) electrode, it is found that the PtNi alloy-graphene/GC electrode exhibited excellent electrocatalytic performance on glucose oxidation. Furthermore, the results from amperometric current–time curve show a good linear range of 0.5–15 mM with the limit of detection of 16 uM (S/N = 3) and a high sensitivity of 24.03 uAmM−1 cm−2. On account of the good selectivity and durability, the modified electrode was successfully applied on glucose detection in blood serum samples.
其他摘要:Abstract Diabetes has become a universal epidemic in recent years. Herein, the monitoring of glucose in blood is of importance in clinical applications. In this work, PtNi alloy nanoparticles homogeneously dispersed on graphene (PtNi alloy-graphene) was synthesized as a highly effective electrode material for glucose detection. Based on the modified PtNi alloy-graphene/glass carbon (PtNi alloy-graphene/GC) electrode, it is found that the PtNi alloy-graphene/GC electrode exhibited excellent electrocatalytic performance on glucose oxidation. Furthermore, the results from amperometric current–time curve show a good linear range of 0.5–15 mM with the limit of detection of 16 uM (S/N = 3) and a high sensitivity of 24.03 uAmM −1 cm −2 . On account of the good selectivity and durability, the modified electrode was successfully applied on glucose detection in blood serum samples.