首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:The electrophysiological effect of cannabidiol on hERG current and in guinea-pig and rabbit cardiac preparations
  • 本地全文:下载
  • 作者:Péter Orvos ; Bence Pászti ; Leila Topal
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-73165-2
  • 出版社:Springer Nature
  • 摘要:Cannabis use is associated with cardiovascular adverse effects ranging from arrhythmias to sudden cardiac death. The exact mechanism of action behind these activities is unknown. The aim of our work was to study the effect of cannabidiol (CBD), tetrahydrocannabinol and 11-nor-9-carboxy-tetrahydrocannabinol on cellular cardiac electrophysiological properties including ECG parameters, action potentials, hERG and IKr ion channels in HEK cell line and in rabbit and guinea pig cardiac preparations. CBD increased action potential duration in rabbit and guinea pig right ventricular papillary muscle at lower concentrations (1 µM, 2.5 µM and 5 µM) but did not significantly change it at 10 µM. CBD at high concentration (10 µM) decreased inward late sodium and L-type calcium currents as well. CBD inhibited hERG potassium channels with an IC50 value of 2.07 µM at room temperature and delayed rectifier potassium current with 6.5 µM at 37 °C, respectively. The frequency corrected QT interval (QTc) was significantly lengthened in anaesthetized guinea pig without significantly changing other ECG parameters. Although the IC50 value of CBD was higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that hERG and potassium channel inhibition might have a role in the possible proarrhythmic adverse effects of cannabinoids in situations where metabolism of CBD impaired and/or the repolarization reserve is weakened.
  • 其他摘要:Abstract Cannabis use is associated with cardiovascular adverse effects ranging from arrhythmias to sudden cardiac death. The exact mechanism of action behind these activities is unknown. The aim of our work was to study the effect of cannabidiol (CBD), tetrahydrocannabinol and 11-nor-9-carboxy-tetrahydrocannabinol on cellular cardiac electrophysiological properties including ECG parameters, action potentials, hERG and I Kr ion channels in HEK cell line and in rabbit and guinea pig cardiac preparations. CBD increased action potential duration in rabbit and guinea pig right ventricular papillary muscle at lower concentrations (1 µM, 2.5 µM and 5 µM) but did not significantly change it at 10 µM. CBD at high concentration (10 µM) decreased inward late sodium and L-type calcium currents as well. CBD inhibited hERG potassium channels with an IC 50 value of 2.07 µM at room temperature and delayed rectifier potassium current with 6.5 µM at 37 °C, respectively. The frequency corrected QT interval (QT c ) was significantly lengthened in anaesthetized guinea pig without significantly changing other ECG parameters. Although the IC 50 value of CBD was higher than literary C max values after CBD smoking and oral intake, our results raise the possibility that hERG and potassium channel inhibition might have a role in the possible proarrhythmic adverse effects of cannabinoids in situations where metabolism of CBD impaired and/or the repolarization reserve is weakened.
国家哲学社会科学文献中心版权所有