首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Deterioration risk of dryland earthen heritage sites facing future climatic uncertainty
  • 本地全文:下载
  • 作者:Jenny Richards ; Richard Bailey ; Jerome Mayaud
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-73456-8
  • 出版社:Springer Nature
  • 摘要:Uncertainties over future climatic conditions pose significant challenges when selecting appropriate conservation strategies for heritage sites. Choosing effective strategies is especially important for earthen heritage sites located in dryland regions, as many are experiencing rapid environmentally-driven deterioration. We use a newly developed cellular automaton model (ViSTA-HD), to evaluate the environmental deterioration risk, over a 100-year period, under a range of potential climate and conservation scenarios. Results show increased wind velocities could substantially increase the overall deterioration risk, implying the need for wind-reducing conservation strategies. In contrast, predicted increases in rainfall are not likely to increase the overall deterioration risk, despite greater risk of rain-driven deterioration features. Of the four conservation strategies tested in our model, deterioration risk under all climatic scenarios was best reduced by increasing the coverage of natural, randomly-distributed vegetation to 80%. We suggest this approach could be an appropriate long-term conservation strategy for other earthen sites in dryland regions.
  • 其他摘要:Abstract Uncertainties over future climatic conditions pose significant challenges when selecting appropriate conservation strategies for heritage sites. Choosing effective strategies is especially important for earthen heritage sites located in dryland regions, as many are experiencing rapid environmentally-driven deterioration. We use a newly developed cellular automaton model (ViSTA-HD), to evaluate the environmental deterioration risk, over a 100-year period, under a range of potential climate and conservation scenarios. Results show increased wind velocities could substantially increase the overall deterioration risk, implying the need for wind-reducing conservation strategies. In contrast, predicted increases in rainfall are not likely to increase the overall deterioration risk, despite greater risk of rain-driven deterioration features. Of the four conservation strategies tested in our model, deterioration risk under all climatic scenarios was best reduced by increasing the coverage of natural, randomly-distributed vegetation to 80%. We suggest this approach could be an appropriate long-term conservation strategy for other earthen sites in dryland regions.
国家哲学社会科学文献中心版权所有