首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Discovery and validation of candidate genes for grain iron and zinc metabolism in pearl millet [ Pennisetum glaucum (L.) R. Br.]
  • 本地全文:下载
  • 作者:Mahesh D. Mahendrakar ; Maheshwari Parveda ; P. B. Kavi Kishor
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-16
  • DOI:10.1038/s41598-020-73241-7
  • 出版社:Springer Nature
  • 摘要:Pearl millet is an important crop for alleviating micronutrient malnutrition through genomics-assisted breeding for grain Fe (GFeC) and Zn (GZnC) content. In this study, we identified candidate genes related to iron (Fe) and zinc (Zn) metabolism through gene expression analysis and correlated it with known QTL regions for GFeC/GZnC. From a total of 114 Fe and Zn metabolism-related genes that were selected from the related crop species, we studied 29 genes. Different developmental stages exhibited tissue and stage-specific expressions for Fe and Zn metabolism genes in parents contrasting for GFeC and GZnC. Results revealed that PglZIP, PglNRAMP and PglFER gene families were candidates for GFeC and GZnC. Ferritin-like gene, PglFER1 may be the potential candidate gene for GFeC. Promoter analysis revealed Fe and Zn deficiency, hormone, metal-responsive, and salt-regulated elements. Genomic regions underlying GFeC and GZnC were validated by annotating major QTL regions for grain Fe and Zn. Interestingly, PglZIP and PglNRAMP gene families were found common with a previously reported linkage group 7 major QTL region for GFeC and GZnC. The study provides insights into the foundation for functional dissection of different Fe and Zn metabolism genes homologs and their subsequent use in pearl millet molecular breeding programs globally.
  • 其他摘要:Abstract Pearl millet is an important crop for alleviating micronutrient malnutrition through genomics-assisted breeding for grain Fe (GFeC) and Zn (GZnC) content. In this study, we identified candidate genes related to iron (Fe) and zinc (Zn) metabolism through gene expression analysis and correlated it with known QTL regions for GFeC/GZnC. From a total of 114 Fe and Zn metabolism-related genes that were selected from the related crop species, we studied 29 genes. Different developmental stages exhibited tissue and stage-specific expressions for Fe and Zn metabolism genes in parents contrasting for GFeC and GZnC. Results revealed that PglZIP, PglNRAMP and PglFER gene families were candidates for GFeC and GZnC. Ferritin-like gene, PglFER1 may be the potential candidate gene for GFeC. Promoter analysis revealed Fe and Zn deficiency, hormone, metal-responsive, and salt-regulated elements. Genomic regions underlying GFeC and GZnC were validated by annotating major QTL regions for grain Fe and Zn. Interestingly, PglZIP and PglNRAMP gene families were found common with a previously reported linkage group 7 major QTL region for GFeC and GZnC. The study provides insights into the foundation for functional dissection of different Fe and Zn metabolism genes homologs and their subsequent use in pearl millet molecular breeding programs globally.
国家哲学社会科学文献中心版权所有