首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Beyond MHz image recordings using LEDs and the FRAME concept
  • 本地全文:下载
  • 作者:Vassily Kornienko ; Elias Kristensson ; Andreas Ehn
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-73738-1
  • 出版社:Springer Nature
  • 摘要:Many important scientific questions in physics, chemistry and biology rely on high-speed optical imaging techniques for their investigations. These techniques are either passive, relying on the rapid readout of photoactive elements, or active, relying on the illumination properties of specially designed pulse trains. Currently, MHz imaging speeds are difficult to realize; passive methods, being dictated by electronics, cause the unification of high spatial resolution with high frame rates to be very challenging, while active methods rely on expensive and complex hardware such as femto- and picosecond laser sources. Here we present an accessible temporally resolved imaging system for shadowgraphy based on multiplexed LED illumination that is capable of producing four images at MHz frame rates. Furthermore as the LEDs are independent of each other, any light burst configuration can be obtained, allowing for instance the simultaneous determination of low- and high speed events in parallel. To the best of the authors’ knowledge, this is the fastest high speed imaging system that does not rely on pulsed lasers or fast detectors, in this case reaching up to 4.56 MHz.
  • 其他摘要:Abstract Many important scientific questions in physics, chemistry and biology rely on high-speed optical imaging techniques for their investigations. These techniques are either passive, relying on the rapid readout of photoactive elements, or active, relying on the illumination properties of specially designed pulse trains. Currently, MHz imaging speeds are difficult to realize; passive methods, being dictated by electronics, cause the unification of high spatial resolution with high frame rates to be very challenging, while active methods rely on expensive and complex hardware such as femto- and picosecond laser sources. Here we present an accessible temporally resolved imaging system for shadowgraphy based on multiplexed LED illumination that is capable of producing four images at MHz frame rates. Furthermore as the LEDs are independent of each other, any light burst configuration can be obtained, allowing for instance the simultaneous determination of low- and high speed events in parallel. To the best of the authors’ knowledge, this is the fastest high speed imaging system that does not rely on pulsed lasers or fast detectors, in this case reaching up to 4.56 MHz.
国家哲学社会科学文献中心版权所有