首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Tunneling-induced optical limiting in quantum dot molecules
  • 本地全文:下载
  • 作者:Mohadeseh Veisi ; Seyedeh Hamideh Kazemi ; Mohammad Mahmoudi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-73343-2
  • 出版社:Springer Nature
  • 摘要:We present a convenient way to obtain an optical power limiting behavior in a quantum dot molecule system, induced by an interdot tunneling. Also, the effect of system parameters on the limiting performance is investigated; interestingly, the tunneling rate can affect the limiting performance of the system so that the threshold of the limiting behavior can be a function of the input voltage, allowing the optimization of the limiting action. Furthermore, by investigating the absorption of the probe field, it is demonstrated that the optical limiting is due to a reverse saturable absorption mechanism; indeed, analytical results show that this mechanism is based on a cross-Kerr optical nonlinearity induced by the tunneling. Additionally, the limiting properties of the system are studied by using a Z-scan technique.
  • 其他摘要:Abstract We present a convenient way to obtain an optical power limiting behavior in a quantum dot molecule system, induced by an interdot tunneling. Also, the effect of system parameters on the limiting performance is investigated; interestingly, the tunneling rate can affect the limiting performance of the system so that the threshold of the limiting behavior can be a function of the input voltage, allowing the optimization of the limiting action. Furthermore, by investigating the absorption of the probe field, it is demonstrated that the optical limiting is due to a reverse saturable absorption mechanism; indeed, analytical results show that this mechanism is based on a cross-Kerr optical nonlinearity induced by the tunneling. Additionally, the limiting properties of the system are studied by using a Z-scan technique.
国家哲学社会科学文献中心版权所有