首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Heterogeneous optoelectronic characteristics of Si micropillar arrays fabricated by metal-assisted chemical etching
  • 本地全文:下载
  • 作者:Yang Qian ; David J. Magginetti ; Seokmin Jeon
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-73445-x
  • 出版社:Springer Nature
  • 摘要:Recent progress achieved in metal-assisted chemical etching (MACE) has enabled the production of high-quality micropillar arrays for various optoelectronic applications. Si micropillars produced by MACE often show a porous Si/SiOx shell on crystalline pillar cores introduced by local electrochemical reactions. In this paper, we report the distinct optoelectronic characteristics of the porous Si/SiOx shell correlated to their chemical compositions. Local photoluminescent (PL) images obtained with an immersion oil objective lens in confocal microscopy show a red emission peak (≈ 650 nm) along the perimeter of the pillars that is threefold stronger compared to their center. On the basis of our analysis, we find an unexpected PL increase (≈ 540 nm) at the oil/shell interface. We suggest that both PL enhancements are mainly attributed to the porous structures, a similar behavior observed in previous MACE studies. Surface potential maps simultaneously recorded with topography reveal a significantly high surface potential on the sidewalls of MACE-synthesized pillars (  0.5 V), which is restored to the level of planar Si control (− 0.5 V) after removing SiOx in hydrofluoric acid. These distinct optoelectronic characteristics of the Si/SiOx shell can be beneficial for various sensor architectures.
  • 其他摘要:Abstract Recent progress achieved in metal-assisted chemical etching (MACE) has enabled the production of high-quality micropillar arrays for various optoelectronic applications. Si micropillars produced by MACE often show a porous Si/SiO x shell on crystalline pillar cores introduced by local electrochemical reactions. In this paper, we report the distinct optoelectronic characteristics of the porous Si/SiO x shell correlated to their chemical compositions. Local photoluminescent (PL) images obtained with an immersion oil objective lens in confocal microscopy show a red emission peak (≈ 650 nm) along the perimeter of the pillars that is threefold stronger compared to their center. On the basis of our analysis, we find an unexpected PL increase (≈ 540 nm) at the oil/shell interface. We suggest that both PL enhancements are mainly attributed to the porous structures, a similar behavior observed in previous MACE studies. Surface potential maps simultaneously recorded with topography reveal a significantly high surface potential on the sidewalls of MACE-synthesized pillars (  0.5 V), which is restored to the level of planar Si control (− 0.5 V) after removing SiO x in hydrofluoric acid. These distinct optoelectronic characteristics of the Si/SiO x shell can be beneficial for various sensor architectures.
国家哲学社会科学文献中心版权所有