摘要:The objective of the study was to observe brain function changes in Obstructive Sleep Apnoea Hypopnoea Syndrome (OSAHS) patients at high altitude. Resting-state functional magnetic resonance imaging (rs-fMRI) in patients with OSAHS was assessed using regional homogeneity (ReHo), amplitude of low frequency fluctuation (ALFF) and functional connectivity (FC). In this study, 36 male patients with OSAHS and 38 healthy male subjects were recruited from high-altitude areas, specifically, altitudes of 2,000–3,000 m. OSAHS was diagnosed by polysomnography (PSG). The blood oxygen level-dependent (BOLD) signals of OSAHS patients and healthy controls in the resting state were obtained and compared using ReHo, ALFF and FC methods. The posterior cingulate cortex (PCC) was selected as the seed region in the comparison of FC between the two groups. Compared with the healthy control group, multiple brain functions in the OSAHS patient group were different. There were correlations between the brain function values of some brain regions and demographic data. We also found that in contrast to earlier findings with individuals in plains areas, the brain function at the frontal lobe and the precuneus were higher in OSAHS patients, and the PCC showed higher FC with the left caudate, which may be due to the high-altitude hypoxic environment.
其他摘要:Abstract The objective of the study was to observe brain function changes in Obstructive Sleep Apnoea Hypopnoea Syndrome (OSAHS) patients at high altitude. Resting-state functional magnetic resonance imaging (rs-fMRI) in patients with OSAHS was assessed using regional homogeneity (ReHo), amplitude of low frequency fluctuation (ALFF) and functional connectivity (FC). In this study, 36 male patients with OSAHS and 38 healthy male subjects were recruited from high-altitude areas, specifically, altitudes of 2,000–3,000 m. OSAHS was diagnosed by polysomnography (PSG). The blood oxygen level-dependent (BOLD) signals of OSAHS patients and healthy controls in the resting state were obtained and compared using ReHo, ALFF and FC methods. The posterior cingulate cortex (PCC) was selected as the seed region in the comparison of FC between the two groups. Compared with the healthy control group, multiple brain functions in the OSAHS patient group were different. There were correlations between the brain function values of some brain regions and demographic data. We also found that in contrast to earlier findings with individuals in plains areas, the brain function at the frontal lobe and the precuneus were higher in OSAHS patients, and the PCC showed higher FC with the left caudate, which may be due to the high-altitude hypoxic environment.