首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Vitamin E is necessary for zebrafish nervous system development
  • 本地全文:下载
  • 作者:Brian Head ; Jane La Du ; Robyn L. Tanguay
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-71760-x
  • 出版社:Springer Nature
  • 摘要:Vitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain zebrafish, fed either VitE sufficient (E ) or deficient (E−) diets, were spawned to obtain E  and E− embryos, which were subjected to RNA in situ hybridization and RT-qPCR. Ttpa was expressed ubiquitously in embryos up to 12 hpf. Early gastrulation (6 hpf) assessed by goosecoid expression was unaffected by VitE status. By 24 hpf, embryos expressed ttpa in brain ventricle borders, which showed abnormal closure in E− embryos. They also displayed disrupted patterns of paired box 2a (pax2a) and SRY-box transcription factor 10 (sox10) expression in the midbrain-hindbrain boundary, spinal cord and dorsal root ganglia. In E− embryos, the collagen sheath notochord markers (col2a1a and col9a2) appeared bent. Severe developmental errors in E− embryos were characterized by improper nervous system patterning of the usually carefully programmed transcriptional signals. Histological analysis also showed developmental defects in the formation of the fore-, mid- and hindbrain and somites of E− embryos at 24 hpf. Ttpa expression profile was not altered by the VitE status demonstrating that VitE itself, and not ttpa, is required for development of the brain and peripheral nervous system in this vertebrate embryo model.
  • 其他摘要:Abstract Vitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain zebrafish, fed either VitE sufficient (E ) or deficient (E−) diets, were spawned to obtain E  and E− embryos, which were subjected to RNA in situ hybridization and RT-qPCR. Ttpa was expressed ubiquitously in embryos up to 12 hpf. Early gastrulation (6 hpf) assessed by goosecoid expression was unaffected by VitE status. By 24 hpf, embryos expressed ttpa in brain ventricle borders, which showed abnormal closure in E− embryos. They also displayed disrupted patterns of paired box 2a ( pax2a ) and SRY-box transcription factor 10 ( sox10 ) expression in the midbrain-hindbrain boundary, spinal cord and dorsal root ganglia. In E− embryos, the collagen sheath notochord markers ( col2a1a and col9a2 ) appeared bent. Severe developmental errors in E− embryos were characterized by improper nervous system patterning of the usually carefully programmed transcriptional signals. Histological analysis also showed developmental defects in the formation of the fore-, mid- and hindbrain and somites of E− embryos at 24 hpf. Ttpa expression profile was not altered by the VitE status demonstrating that VitE itself, and not ttpa , is required for development of the brain and peripheral nervous system in this vertebrate embryo model.
国家哲学社会科学文献中心版权所有