首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Enhancement of photovoltage by electronic structure evolution in multiferroic Mn-doped BiFeO 3 thin films
  • 本地全文:下载
  • 作者:Seiji Nakashima ; Tohru Higuchi ; Akira Yasui
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-71928-5
  • 出版社:Springer Nature
  • 摘要:The bulk photovoltaic effect (BPVE) is a mechanism of recent focus for novel solar cells that exceed the power conversion efficiency of p–n junction solar cells because of the quantum mechanical effect to generate photocurrent known as shift current. Ferroelectrics are receiving attention again because of their high voltage generation by the BPVE and converse piezoelectric effect to realize high performance optical actuators. We have investigated the BPVE in ferroelectric BiFeO3 (BFO) single crystal thin films, whereby the photovoltage was enhanced by Mn doping, and 852 V generation was demonstrated at 80 K. The enhancement mechanism was also investigated using soft and hard X-ray photoelectron spectroscopy (SXPES, HAXPES), and soft X-ray absorption spectroscopy with synchrotron radiation. This report reveals a way to new voltage source applications employing the BPVE for high impedance devices with ferroelectrics. Important aspects for designing ferroelectric materials by impurity doping are also discussed.
  • 其他摘要:Abstract The bulk photovoltaic effect (BPVE) is a mechanism of recent focus for novel solar cells that exceed the power conversion efficiency of p–n junction solar cells because of the quantum mechanical effect to generate photocurrent known as shift current. Ferroelectrics are receiving attention again because of their high voltage generation by the BPVE and converse piezoelectric effect to realize high performance optical actuators. We have investigated the BPVE in ferroelectric BiFeO 3 (BFO) single crystal thin films, whereby the photovoltage was enhanced by Mn doping, and 852 V generation was demonstrated at 80 K. The enhancement mechanism was also investigated using soft and hard X-ray photoelectron spectroscopy (SXPES, HAXPES), and soft X-ray absorption spectroscopy with synchrotron radiation. This report reveals a way to new voltage source applications employing the BPVE for high impedance devices with ferroelectrics. Important aspects for designing ferroelectric materials by impurity doping are also discussed.
国家哲学社会科学文献中心版权所有