首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
  • 本地全文:下载
  • 作者:Brian Shevitski ; Christopher T. Chen ; Christoph Kastl
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-68321-7
  • 出版社:Springer Nature
  • 摘要:Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS2 films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements.
国家哲学社会科学文献中心版权所有