摘要:The intolerance of uncertainty (IU) model holds that excessive emotional response under uncertain conditions is conducive to the maintenance of anxiety, and individuals with a high anxiety level may exhibit a negative bias and experience anxiety when processing uncertain information. However, the dynamic electrophysiological correlation of this negative bias is not clear. Therefore, we used an adapted study–test paradigm to explore the changes in the electroencephalography (EEG) of subjects when processing uncertain cues and certain cues (certain neutral and certain threatening) and correlated the differences with anxiety level. The behavioral results showed that there was a significant positive correlation between the trait anxiety score and β value under the threatening condition, which indicated that individuals with high trait anxiety take a more conservative approach in the face of negative stimuli. The results of EEG showed that during the test stage, the components N1 and P2, which are related to early perception, had significant conditional main effects. Meanwhile, under uncertain conditions, the N1 peak was positively correlated with the state anxiety score. In the study stage, we found that the N400 component was significantly larger in the early study stage than in the late study stage under uncertain conditions. In sum, individuals with high anxiety levels had a negative bias in the early cue processing of the test stage, and anxiety did not affect the study stage.