摘要:We generated a new transgenic mouse model that expresses a pHluorin-mKate2 fluorescent protein fused with human LC3B (PK-LC3 mice) for monitoring autophagy activity in neurons of the central nervous system. Histological analysis revealed fluorescent puncta in neurons of the cerebral cortex, hippocampus, cerebellar Purkinje cells, and anterior spinal regions. Using CLEM analysis, we confirmed that PK-LC3-positive puncta in the perikarya of Purkinje cells correspond to autophagic structures. To validate the usability of PK-LC3 mice, we quantified PK-LC3 puncta in Purkinje cells of mice kept in normal feeding conditions and of mice starved for 24 hours. Our results showed a significant increase in autophagosome number and in individual puncta areal size following starvation. To confirm these results, we used morphometry at the electron microscopic level to analyze the volume densities of autophagosomes and lysosomes/autolysosomes in Purkinje cells of PK-LC3 mice. The results revealed that the volume densities of autophagic structures increase significantly after starvation. Together, our data show that PK-LC3 mice are suitable for monitoring autophagy flux in Purkinje cells of the cerebellum, and potentially other areas in the central nervous system.