首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Predicting Radiation Resistance in Breast Cancer with Expression Status of Phosphorylated S6K1
  • 本地全文:下载
  • 作者:Jihye Choi ; Yi Na Yoon ; Nawon Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-57496-8
  • 出版社:Springer Nature
  • 摘要:Emerging evidence suggests that the mammalian target of rapamcyin (mTOR) pathway is associated with radio-resistance in cancer treatment. We hypothesised that phosphorylated ribosomal S6 kinase 1 (p-S6K1), a major downstream regulator of the mTOR pathway, may play a role in predicting radio-resistance. Therefore, we evaluated the association of p-S6K1 expression with radio-resistance in breast cancer cell lines and patients. During median follow-up of 33 (range, 0.1-111) months for 1770 primary breast cancer patients who underwent surgery, patients expressing p-S6K1 showed worse 10-year loco-regional recurrence-free survival (LRFS) compared to that of p-S6K1-negative patients after radiotherapy (93.4% vs. 97.7%, p = 0.015). Multivariate analysis revealed p-S6K1 expression as a predictor of radio-resistance (hazard ratio 7.9, 95% confidence interval 1.1-58.5, p = 0.04). In vitro, CD44 high /CD24 low MCF7 cells with a radioresistant phenotype expressed higher levels of p-S6K1 than control MCF7 cells. Furthermore, the combination of radiation with treatment of everolimus, an mTOR-S6K1 pathway inhibitor, sensitised CD44 high /CD24 low MCF7 cells to a greater extent than MCF7 cells. This study provides in vivo and in vitro evidence for p-S6K1 expression status as an important marker for predicting the resistance to radiotherapy and as a possible target for radio-sensitization in breast cancer patients.
国家哲学社会科学文献中心版权所有