摘要:The husk—the leaf-like outer covering of maize ear—has multiple functions, including protecting the ear from diseases infection and dehydration. In previous studies, we genotyped an association panel of 508 inbred lines genotyped with a total of ~550,000 SNPs (Illumina 50 K SNP Chip and RNA-seq). Genome-Wide Association Studies (GWAS) were conducted on four husk traits: husk length (HL), husk layer number (HN), husk thickness (HT), and husk width (HW). Minimal associations were identified and none of them passed the P-value threshold after a Bonferroni multiple-test correction using a single locus test in framework of mixed linear model. In this study, we doubled the number of SNPs (~1,250,000 in total) by adding GBS and 600 K SNP Chip. GWAS, performed with the recently developed multiple loci model (BLINK), revealed six genetic loci associated with HN and HT above the Bonferroni multiple-test threshold. Five candidate genes were identified based on the linkage disequilibrium with these loci, including GRMZM2G381691 and GRMZM2G012416. These two genes were up-regulation and down-regulation in all husk related tissues, respectively. GRMZM2G381691 associated with HT encoded a CCT domain protein, which expressed higher in tropical than temperate maize. GRMZM2G012416 associated with HN encoded an Armadillo (ARM) repeat protein, which regulated GA signal pathway. These associated SNPs and candidate genes paved a path to understand the genetic architecture of husk in maize.