首页    期刊浏览 2025年01月08日 星期三
登录注册

文章基本信息

  • 标题:3D-MCN: A 3D Multi-scale Capsule Network for Lung Nodule Malignancy Prediction
  • 本地全文:下载
  • 作者:Parnian Afshar ; Anastasia Oikonomou ; Farnoosh Naderkhani
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-64824-5
  • 出版社:Springer Nature
  • 摘要:Despite the advances in automatic lung cancer malignancy prediction, achieving high accuracy remains challenging. Existing solutions are mostly based on Convolutional Neural Networks (CNNs), which require a large amount of training data. Most of the developed CNN models are based only on the main nodule region, without considering the surrounding tissues. Obtaining high sensitivity is challenging with lung nodule malignancy prediction. Moreover, the interpretability of the proposed techniques should be a consideration when the end goal is to utilize the model in a clinical setting. Capsule networks (CapsNets) are new and revolutionary machine learning architectures proposed to overcome shortcomings of CNNs. Capitalizing on the success of CapsNet in biomedical domains, we propose a novel model for lung tumor malignancy prediction. The proposed framework, referred to as the 3D Multi-scale Capsule Network (3D-MCN), is uniquely designed to benefit from: (i) 3D inputs, providing information about the nodule in 3D; (ii) Multi-scale input, capturing the nodule’s local features, as well as the characteristics of the surrounding tissues, and; (iii) CapsNet-based design, being capable of dealing with a small number of training samples. The proposed 3D—MCN architecture predicted lung nodule malignancy with a high accuracy of 93.12%, sensitivity of 94.94%, area under the curve (AUC) of 0.9641, and specificity of 90% when tested on the LIDC-IDRI dataset. When classifying patients as having a malignant condition (i.e., at least one malignant nodule is detected) or not, the proposed model achieved an accuracy of 83%, and a sensitivity and specificity of 84% and 81% respectively.
国家哲学社会科学文献中心版权所有