首页    期刊浏览 2025年01月09日 星期四
登录注册

文章基本信息

  • 标题:Model-Free Cluster Analysis of Physical Property Data using Information Maximizing Self-Argument Training
  • 本地全文:下载
  • 作者:Ryohto Sawada ; Yuma Iwasaki ; Masahiko Ishida
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-6
  • DOI:10.1038/s41598-020-64281-0
  • 出版社:Springer Nature
  • 摘要:We present semi-supervised information maximizing self-argument training (IMSAT), a neural network-based classification method that works without the preparation of labeled data. Semi-supervised IMSAT can amplify specific differences and avoid undesirable misclassification in accordance with the purpose. We demonstrate that semi-supervised IMSAT has a comparable performance with existing methods for semi-supervised learning of image classification and can also classify real experimental data (X-ray diffraction patterns and thermoelectric hysteresis curves) in the same way even though their shape and dimensions are different. Our algorithm will contribute to the automation of big data processing and artificial intelligence-driven material development.
国家哲学社会科学文献中心版权所有