首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Ab Initio Prediction of the Phase Transition for Solid Ammonia at High Pressures
  • 本地全文:下载
  • 作者:Lei Huang ; Yanqiang Han ; Jinyun Liu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-64030-3
  • 出版社:Springer Nature
  • 摘要:Ammonia is one of the most basic components on the planet and its high-pressure characteristics play an important role in planetary science. Solid ammonia crystals frequently adopt multiple distinct polymorphs exhibiting different properties. Predicting the crystal structure of these polymorphs and under what thermodynamic conditions these polymorphs are stable would be of great value to environmental industry and other fields. Theoretical calculations based on the classical force fields and density-functional theory (DFT) are versatile methods but lack of accurate description of weak intermolecular interactions for molecular crystals. In this study, we employ an ab initio computational study on the solid ammonia at high pressures, using the second-order Møller-Plesset perturbation (MP2) theory and the coupled cluster singles, doubles, and perturbative triples (CCSD(T)) theory along with the embedded fragmentation method. The proposed algorithm is capable of performing large-scale calculations using high-level wavefunction theories, and accurately describing covalent, ionic, hydrogen bonding, and dispersion interactions within molecular crystals, and therefore can predict the crystal structures, Raman spectra and phase transition of solid ammonia phases I and IV accurately. We confirm the crystal structures of solid ammonia phases I and IV that have been controversial for a long time and predict their phase transition that occurs at 1.17 GPa and 210 K with small temperature dependence, which is in line with experiment.
国家哲学社会科学文献中心版权所有