首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Massive analysis of 64,628 bacterial genomes to decipher water reservoir and origin of mobile colistin resistance genes: is there another role for these enzymes?
  • 本地全文:下载
  • 作者:Mariem Ben Khedher ; Sophie Alexandra Baron ; Toilhata Riziki
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-63167-5
  • 出版社:Springer Nature
  • 摘要:Since 2015, new worrying colistin resistance mechanism, mediated by mcr-1 gene has been reported worldwide along with eight newly described variants but their source(s) and reservoir(s) remain largely unexplored. Here, we conducted a massive bioinformatic analysis of bacterial genomes to investigate the reservoir and origin of mcr variants. We identified 13’658 MCR-1 homologous sequences in 494 bacterial genera. Moreover, analysis of 64’628 bacterial genomes (60 bacterial genera and 1’047 species) allows identifying a total of 6’651 significant positive hits (coverage >90% and similarity >50%) with the nine MCR variants from 39 bacterial genera and more than 1’050 species. A high number of MCR-1 was identified in Escherichia coli (n = 862). Interestingly, while almost all variants were identified in bacteria from different sources (i.e. human, animal, and environment), the last variant, MCR-9, was exclusively detected in bacteria from human. Although these variants could be identified in bacteria from human and animal sources, we found plenty MCR variants in unsuspected bacteria from environmental origin, especially from water sources. The ubiquitous presence of mcr variants in bacteria from water likely suggests another role in the biosphere of these enzymes as an unknown defense system against natural antimicrobial peptides and/or bacteriophage predation.
国家哲学社会科学文献中心版权所有