首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Fungal Cell Wall and Methyl-β–Cyclodextrin Synergistically Enhance Paclitaxel Biosynthesis and Secretion in Corylus avellana Cell Suspension Culture
  • 本地全文:下载
  • 作者:Siamak Farhadi ; Ahmad Moieni ; Naser Safaie
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-62196-4
  • 出版社:Springer Nature
  • 摘要:Paclitaxel is the top-selling chemotherapeutic drug used for the treatment of lung, ovarian and breast cancer as well as Kaposi’s sarcoma. Cell suspension culture (CSC) of Corylus avellana has been addressed as a promising alternative for producing paclitaxel. In this study, endophytic fungus strain YEF33 was isolated from Taxus baccata and identified as Coniothyrium palmarum. The effects of the elicitors derived from this fungus including cell extract, culture filtrate and cell wall (CW) and also chitin, alone or in combination with Methyl-β-Cyclodextrin (MBCD), on paclitaxel biosynthesis in C. avellana CSC were assayed for the first time. CW of C. palmarum was the most efficient fungal elicitor for paclitaxel biosynthesis in C. avellana CSC. The results revealed that MBCD affected paclitaxel biosynthesis differently depending on fungal elicitor type and vice versa. MBCD, either alone or in combination with fungal elicitors, induced a high secretion of paclitaxel, suggesting the decrement of toxicity and retro-inhibition processes of paclitaxel for cells. The joint effects of C. palmarum CW (2.5% (v/v) on 17th day) and 50 mM MBCD synergistically enhanced paclitaxel biosynthesis (402.4 µg l−1; 5.8-fold), 78.6% of which (316.5 µg l−1) were secreted into culture medium, a level 146% higher than that in control.
国家哲学社会科学文献中心版权所有