首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:High-level Fusion Coupled with Mahalanobis Distance Weighted (MDW) Method for Multivariate Calibration
  • 本地全文:下载
  • 作者:Qianqian Li ; Zhisheng Wu ; Ling Lin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-62396-y
  • 出版社:Springer Nature
  • 摘要:Near infrared spectra (NIR) technology is a widespread detection method with high signal to noise ratio (SNR) while has poor modeling interpretation due to the overlapped features. Alternatively, mid-infrared spectra (MIR) technology demonstrates more chemical features and gives a better explanation of the model. Yet, it has the defects of low SNR. With the purpose of developing a model with plenty of characteristics as well as with higher SNR, NIR and MIR technologies are combined to perform high-level fusion strategy for quantitative analysis. A novel chemometrical method named as Mahalanobis distance weighted (MDW) is proposed to integrate NIR and MIR techniques comprehensively. Mahalanobis distance (MD) based on the principle of spectral similarity is obtained to calculate the weight of each sample. Specifically, the weight is assigned to the inverse ratio of the corresponding MD. Besides, the proposed MDW method is applied to NIR and MIR spectra of active ingredients in deltamethrin and emamectin benzoate formulations for quantitative analysis. As a consequence, the overall results show that the MDW method is promising with noticeable improvement of predictive performance than individual methods when executing high-level fusion for quantitative analysis.
国家哲学社会科学文献中心版权所有