摘要:Complexity of cascading interrelations between molecular cell components at different levels from genome to metabolome ordains a massive difficulty in comprehending biological happenings. However, considering these complications in the systematic modelings will result in realistic and reliable outputs. The multilayer networks approach is a relatively innovative concept that could be applied for multiple omics datasets as an integrative methodology to overcome heterogeneity difficulties. Herein, we employed the multilayer framework to rehabilitate colon adenocarcinoma network by observing co-expression correlations, regulatory relations, and physical binding interactions. Hub nodes in this three-layer network were selected using a heterogeneous random walk with random jump procedure. We exploited local composite modules around the hub nodes having high overlay with cancer-specific pathways, and investigated their genes showing a different expressional pattern in the tumor progression. These genes were examined for survival effects on the patient’s lifespan, and those with significant impacts were selected as potential candidate biomarkers. Results suggest that identified genes indicate noteworthy importance in the carcinogenesis of the colon.