首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Profiling NVIDIA Jetson Embedded GPU Devices for Autonomous Machines
  • 本地全文:下载
  • 作者:Yazhou Li ; Yahong Rosa Zheng
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2020
  • 卷号:10
  • 期号:18
  • 页码:133-144
  • DOI:10.5121/csit.2020.101811
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:This paper presents two methods, tegrastats GUI version jtop and Nsight Systems, to profile NVIDIA Jetson embedded GPU devices on a model race car which is a great platform for prototyping and field testing autonomous driving algorithms. The two profilers analyze the power consumption, CPU/GPU utilization, and the run time of CUDA C threads of Jetson TX2 in five different working modes. The performance differences among the five modes are demonstrated using three example programs: vector add in C and CUDA C, a simple ROS (Robot Operating System) package of the wall follow algorithm in Python, and a complex ROS package of the particle filter algorithm for SLAM (Simultaneous Localization and Mapping). The results show that the tools are effective means for selecting operating mode of the embedded GPU devices.
  • 关键词:Nvidia Jetson ;embedded GPU ;CUDA ;Automous Driving;Robotic Operating Systems (ROS).
国家哲学社会科学文献中心版权所有