首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Flow Characterization of Multi-Phase Particulate Slurry in Thermal Power Plants Using Computational Fluid Dynamics
  • 本地全文:下载
  • 作者:Om Prakash ; Rajesh Arora
  • 期刊名称:Journal of Thermal Engineering
  • 电子版ISSN:2148-7847
  • 出版年度:2020
  • 卷号:6
  • 期号:1
  • 页码:187-203
  • DOI:10.18186/thermal.672785
  • 出版社:Yildiz Technical University
  • 摘要:The key issue associated with the thermal power plant is the disposal of ash-water slurry and the process of its transportation is accomplished using long length pipelines. The designing of such pipelines is a vital endeavor of researchers and designers globally. In this perspective, numerical simulation of 42 mm diameter three-dimensional slurry flow pipeline carrying high concentration of mono-dispersed fine ash particles has been carried out. The study is enunciated by employing Eulerian- Eulerian two-phase model with RNG k-ɛ turbulence model with the aim of visualizing and understanding the characteristics of the slurry flow behavior. The coal ash slurry concentration varies between 50% to 70% (by weight) for velocity ranges, 1-3 ms-1 . The modeling is done using Fluent commercial software with the intention of predicting the characteristics of flow for 300 µm particle size. It is observed that pressure drop upsurges non-linearly with solid concentrations and slurry velocity across pipeline. The obtained results of predetermined pressure drop are analytically compared with the experimental results. Moreover, the results are also compared with that of Eulerian-Langrange model using SST K-ω turbulence model and it is found that RNG k-ɛ turbulence model yields more accurate and desirable results.
  • 关键词:3D CFD; Eulerian–Eulerian Two-Phase Model; Thermal Power Plants; Slurry Concentration; Pressure Drop
国家哲学社会科学文献中心版权所有