首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Interpretable Variational Graph Autoencoder with Noninformative Prior
  • 本地全文:下载
  • 作者:Lili Sun ; Xueyan Liu ; Min Zhao
  • 期刊名称:Future Internet
  • 电子版ISSN:1999-5903
  • 出版年度:2021
  • 卷号:13
  • 期号:2
  • 页码:51
  • DOI:10.3390/fi13020051
  • 出版社:MDPI Publishing
  • 摘要:Variational graph autoencoder, which can encode structural information and attribute information in the graph into low-dimensional representations, has become a powerful method for studying graph-structured data. However, most existing methods based on variational (graph) autoencoder assume that the prior of latent variables obeys the standard normal distribution which encourages all nodes to gather around 0. That leads to the inability to fully utilize the latent space. Therefore, it becomes a challenge on how to choose a suitable prior without incorporating additional expert knowledge. Given this, we propose a novel noninformative prior-based interpretable variational graph autoencoder (NPIVGAE). Specifically, we exploit the noninformative prior as the prior distribution of latent variables. This prior enables the posterior distribution parameters to be almost learned from the sample data. Furthermore, we regard each dimension of a latent variable as the probability that the node belongs to each block, thereby improving the interpretability of the model. The correlation within and between blocks is described by a block–block correlation matrix. We compare our model with state-of-the-art methods on three real datasets, verifying its effectiveness and superiority.
  • 关键词:neural networks; network representation learning; noninformative prior distribution; variational graph autoencoder; deep learning neural networks ; network representation learning ; noninformative prior distribution ; variational graph autoencoder ; deep learning
国家哲学社会科学文献中心版权所有