摘要:With the continuous development of west of China, a new kind of tunnel, namely spiral tunnel, has appeared in the expressway. Due to the special linear pattern, the resistance of airflow in spiral tunnel has been found to change, but there are few relevant researches at present. Therefore, numerical calculation method is used to study the variation of flow resistance in spiral pipe with different curvature. The results show that when the fluid flows in the spiral pipe, the wind speed is not uniformly distributed. The highest speed is not in the center of the pipe, but on the outside of the pipe, and the offset distance decreases with the increase of the radius of curvature. In addition, the change of flow resistance in spiral pipe is studied, and it is found that the change rate of flow resistance decreases with the increase of curvature radius. It shows that the radius of curvature is negatively correlated with the flow resistance.
其他摘要:With the continuous development of west of China, a new kind of tunnel, namely spiral tunnel, has appeared in the expressway. Due to the special linear pattern, the resistance of airflow in spiral tunnel has been found to change, but there are few relevant researches at present. Therefore, numerical calculation method is used to study the variation of flow resistance in spiral pipe with different curvature. The results show that when the fluid flows in the spiral pipe, the wind speed is not uniformly distributed. The highest speed is not in the center of the pipe, but on the outside of the pipe, and the offset distance decreases with the increase of the radius of curvature. In addition, the change of flow resistance in spiral pipe is studied, and it is found that the change rate of flow resistance decreases with the increase of curvature radius. It shows that the radius of curvature is negatively correlated with the flow resistance.