摘要:Aiming at the problem of condition monitoring of thermal power units, a fault early warning method based on fuzzy learning machine is proposed. The extreme learning regression model between monitoring parameters is established by using real-time data. Then the estimated value is fuzzed and used for fuzzy reasoning, finally, the fault diagnosis results of the unit under small abnormal state are obtained. The simulation data of a 1000 MW unit is used for verification test and results show that the proposed method is reliable and accurate which is suitable for thermal unit state warning.
其他摘要:Aiming at the problem of condition monitoring of thermal power units, a fault early warning method based on fuzzy learning machine is proposed. The extreme learning regression model between monitoring parameters is established by using real-time data. Then the estimated value is fuzzed and used for fuzzy reasoning, finally, the fault diagnosis results of the unit under small abnormal state are obtained. The simulation data of a 1000 MW unit is used for verification test and results show that the proposed method is reliable and accurate which is suitable for thermal unit state warning.