摘要:The high penetration of electric vehicles (EVs) will increase burden of a power grid. However, the expansion of capacity of distribution facilities is not always possible, especially in some old residential community. This paper proposes to use an optimal charging strategy of EVs with additional battery energy storage (BES) to improve the charging capabilities in a residential community. By modeling the EV charging behavior, the required charging capacity is evaluated using Monte Carlo method and the BES size is determined as the difference between the required capacity and the distribution capacity. An optimal charging strategy is then proposed to reduce the charging cost and ensure the safe running of distribution network.
其他摘要:The high penetration of electric vehicles (EVs) will increase burden of a power grid. However, the expansion of capacity of distribution facilities is not always possible, especially in some old residential community. This paper proposes to use an optimal charging strategy of EVs with additional battery energy storage (BES) to improve the charging capabilities in a residential community. By modeling the EV charging behavior, the required charging capacity is evaluated using Monte Carlo method and the BES size is determined as the difference between the required capacity and the distribution capacity. An optimal charging strategy is then proposed to reduce the charging cost and ensure the safe running of distribution network.