摘要:The purpose of this paper is to use static and dynamic load tests to evaluate the mechanical performance of a simply supported skew slab bridge and to evaluate its actual bearing capacity. Firstly, the Midas Civil software is used for theoretical simulation, and secondly, the deflection, strain, and dynamic response of the key section of the bridge are studied through static and dynamic load tests. Finally, the measured values and theoretical values are compared and analyzed. The results show that: under static load, the relative residual deflection and relative residual strain of the measuring point of the structure are between -13.8%~-0.4% and -16.7%~1.8% respectively; Under dynamic load, the first-order vertical natural frequency of the test section is 7.813, and the damping ratio is 0.0316, indicating that the bridge is in an elastic working state under the test load, and the stiffness and bearing capacity can meet the requirements of the current code.
其他摘要:The purpose of this paper is to use static and dynamic load tests to evaluate the mechanical performance of a simply supported skew slab bridge and to evaluate its actual bearing capacity. Firstly, the Midas Civil software is used for theoretical simulation, and secondly, the deflection, strain, and dynamic response of the key section of the bridge are studied through static and dynamic load tests. Finally, the measured values and theoretical values are compared and analyzed. The results show that: under static load, the relative residual deflection and relative residual strain of the measuring point of the structure are between -13.8%~-0.4% and -16.7%~1.8% respectively; Under dynamic load, the first-order vertical natural frequency of the test section is 7.813, and the damping ratio is 0.0316, indicating that the bridge is in an elastic working state under the test load, and the stiffness and bearing capacity can meet the requirements of the current code.