摘要:The stress and deflection effects of the line changes before and after the bridge damage are used as indicators to evaluate the bridge damage and the initial damage site. Then a method of combining information is proposed to improve the accuracy of the damage site. Three-span continuous reinforced concrete was used in the analysis. According to the test, the effectiveness of damage identification based on the damage change of the influence line and the feasibility of the damage location method based on multi-sensory information fusion are confirmed.
其他摘要:The stress and deflection effects of the line changes before and after the bridge damage are used as indicators to evaluate the bridge damage and the initial damage site. Then a method of combining information is proposed to improve the accuracy of the damage site. Three-span continuous reinforced concrete was used in the analysis. According to the test, the effectiveness of damage identification based on the damage change of the influence line and the feasibility of the damage location method based on multi-sensory information fusion are confirmed.