首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:The influence of near-field fluxes on seasonal carbon dioxide enhancements: results from the Indianapolis Flux Experiment (INFLUX)
  • 本地全文:下载
  • 作者:Natasha L. Miles ; Kenneth J. Davis ; Scott J. Richardson
  • 期刊名称:Carbon Balance and Management
  • 印刷版ISSN:1750-0680
  • 电子版ISSN:1750-0680
  • 出版年度:2021
  • 卷号:16
  • 期号:1
  • 页码:1-15
  • DOI:10.1186/s13021-020-00166-z
  • 出版社:BioMed Central
  • 摘要:Networks of tower-based CO2 mole fraction sensors have been deployed by various groups in and around cities across the world to quantify anthropogenic CO2 emissions from metropolitan areas. A critical aspect in these approaches is the separation of atmospheric signatures from distant sources and sinks (i.e., the background) from local emissions and biogenic fluxes. We examined CO2 enhancements compared to forested and agricultural background towers in Indianapolis, Indiana, USA, as a function of season and compared them to modeled results, as a part of the Indianapolis Flux (INFLUX) project. At the INFLUX urban tower sites, daytime growing season enhancement on a monthly timescale was up to 4.3–6.5 ppm, 2.6 times as large as those in the dormant season, on average. The enhancement differed significantly depending on choice of background and time of year, being 2.8 ppm higher in June and 1.8 ppm lower in August using a forested background tower compared to an agricultural background tower. A prediction based on land cover and observed CO2 fluxes showed that differences in phenology and drawdown intensities drove measured differences in enhancements. Forward modelled CO2 enhancements using fossil fuel and biogenic fluxes indicated growing season model-data mismatch of 1.1 ± 1.7 ppm for the agricultural background and 2.1 ± 0.5 ppm for the forested background, corresponding to 25–29% of the modelled CO2 enhancements. The model-data total CO2 mismatch during the dormant season was low, − 0.1 ± 0.5 ppm. Because growing season biogenic fluxes at the background towers are large, the urban enhancements must be disentangled from the biogenic signal, and growing season increases in CO2 enhancement could be misinterpreted as increased anthropogenic fluxes if the background ecosystem CO2 drawdown is not considered. The magnitude and timing of enhancements depend on the land cover type and net fluxes surrounding each background tower, so a simple box model is not appropriate for interpretation of these data. Quantification of the seasonality and magnitude of the biological fluxes in the study region using high-resolution and detailed biogenic models is necessary for the interpretation of tower-based urban CO2 networks for cities with significant vegetation.
  • 其他摘要:Abstract Background Networks of tower-based CO 2  mole fraction sensors have been deployed by various groups in and around cities across the world to quantify anthropogenic CO 2 emissions from metropolitan areas. A critical aspect in these approaches is the separation of atmospheric signatures from distant sources and sinks (i.e., the background) from local emissions and biogenic fluxes. We examined CO 2 enhancements compared to forested and agricultural background towers in Indianapolis, Indiana, USA, as a function of season and compared them to modeled results, as a part of the Indianapolis Flux (INFLUX) project. Results At the INFLUX urban tower sites, daytime growing season enhancement on a monthly timescale was up to 4.3–6.5 ppm, 2.6 times as large as those in the dormant season, on average. The enhancement differed significantly depending on choice of background and time of year, being 2.8 ppm higher in June and 1.8 ppm lower in August using a forested background tower compared to an agricultural background tower. A prediction based on land cover and observed CO 2 fluxes showed that differences in phenology and drawdown intensities drove measured differences in enhancements. Forward modelled CO 2 enhancements using fossil fuel and biogenic fluxes indicated growing season model-data mismatch of 1.1 ± 1.7 ppm for the agricultural background and 2.1 ± 0.5 ppm for the forested background, corresponding to 25–29% of the modelled CO 2 enhancements. The model-data total CO 2 mismatch during the dormant season was low, − 0.1 ± 0.5 ppm. Conclusions Because growing season biogenic fluxes at the background towers are large, the urban enhancements must be disentangled from the biogenic signal, and growing season increases in CO 2 enhancement could be misinterpreted as increased anthropogenic fluxes if the background ecosystem CO 2 drawdown is not considered. The magnitude and timing of enhancements depend on the land cover type and net fluxes surrounding each background tower, so a simple box model is not appropriate for interpretation of these data. Quantification of the seasonality and magnitude of the biological fluxes in the study region using high-resolution and detailed biogenic models is necessary for the interpretation of tower-based urban CO 2 networks for cities with significant vegetation.
  • 关键词:Carbon dioxide ; Urban ; Greenhouse gas ; Fluxes ; Background ; INFLUX ; Anthropogenic ; Biogenic
国家哲学社会科学文献中心版权所有