首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Forecasting of zinc coating thickness with artificial neural networks
  • 其他标题:Yapay sinir ağı yaklaşımıyla çinko kalınlığının tahminlenmesi
  • 本地全文:下载
  • 作者:Tuğçen Hatipoğlu ; Semra Boran ; Burcu Özcan
  • 期刊名称:Sakarya University Journal of Science
  • 印刷版ISSN:1301-4048
  • 电子版ISSN:2147-835X
  • 出版年度:2013
  • 卷号:17
  • 期号:1
  • 语种:English
  • 出版社:Sakarya University
  • 摘要:Since the competition level among the companies is increasing day by day, meeting customer demands with qualified products and cost reduction are primary goals of each company. And zinc, the main raw material in galvanization sector, is the most important cost item. So it is required to forecast the amount of zinc to be spent. In this study it is tried to forecast the amount of zinc consumption using the artificial neural network (ANN) method. To evaluate the convenience of values hypothesis tests are done; and the results showed that there is no significant difference between the predicted and real outputs statistically.
  • 其他摘要:İşletmeler arasında artan rekabet nedeniyle müşterinin istediği kalitede ürün üretmek ve maliyetlerin düşürülmesi öncelikli hedeflerdendir. Galvaniz sektöründe temel hammadde girdisi olan Çinko (Zn), en önemli maliyet kalemini oluşturmaktadır. Hem müşteri
  • 关键词:Forecasting;Metaheuristics;Artificial Neural Networks;Coating Thickness
  • 其他关键词:Tahminleme;Metasezgisel;Yapay Sinir Ağları;Kaplama Kalınlığı
国家哲学社会科学文献中心版权所有