摘要:Abstract Parvalbumin-containing projection neurons of the medial-septum-diagonal band of Broca ( $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB ) are essential for hippocampal rhythms and learning operations yet are poorly understood at cellular and synaptic levels. We combined electrophysiological, optogenetic, and modeling approaches to investigate $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB neuronal properties. $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB neurons had intrinsic membrane properties distinct from acetylcholine- and somatostatin-containing MS-DBB subtypes. Viral expression of the fast-kinetic channelrhodopsin ChETA-YFP elicited action potentials to brief (1–2 ms) 470 nm light pulses. To investigate $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB transmission, light pulses at 5–50 Hz frequencies generated trains of inhibitory postsynaptic currents (IPSCs) in CA1 stratum oriens interneurons. Using a similar approach, optogenetic activation of local hippocampal PV ( $$\hbox {PV}_{\text{HC}}$$ PV HC ) neurons generated trains of $$\hbox {PV}_{\text{HC}}$$ PV HC -mediated IPSCs in CA1 pyramidal neurons. Both synapse types exhibited short-term depression (STD) of IPSCs. However, relative to $$\hbox {PV}_{\text{HC}}$$ PV HC synapses, $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB synapses possessed lower initial release probability, transiently resisted STD at gamma (20–50 Hz) frequencies, and recovered more rapidly from synaptic depression. Experimentally-constrained mathematical synapse models explored mechanistic differences. Relative to the $$\hbox {PV}_{\text{HC}}$$ PV HC model, the $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB model exhibited higher sensitivity to calcium accumulation, permitting a faster rate of calcium-dependent recovery from STD. In conclusion, resistance of $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB synapses to STD during short gamma bursts enables robust long-range GABAergic transmission from MS-DBB to hippocampus.