首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Asthma-prone areas modeling using a machine learning model
  • 本地全文:下载
  • 作者:Seyed Vahid Razavi-Termeh ; Abolghasem Sadeghi-Niaraki ; Soo-Mi Choi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1912
  • DOI:10.1038/s41598-021-81147-1
  • 出版社:Springer Nature
  • 摘要:Abstract Nowadays, owing to population growth, increasing environmental pollution, and lifestyle changes, the number of asthmatics has significantly increased. Therefore, the purpose of our study was to determine the asthma-prone areas in Tehran, Iran considering environmental, spatial factors. Initially, we built a spatial database using 872 locations of children with asthma and 13 environmental factors affecting the disease—distance to parks and streets, rainfall, temperature, humidity, pressure, wind speed, particulate matter (PM 10 and PM 2.5), ozone (O 3 ), sulfur dioxide (SO 2 ), carbon monoxide (CO), and nitrogen dioxide (NO 2 ). Subsequently, utilizing this spatial database, a random forest (RF) machine learning model, and a geographic information system, we prepared a map of asthma-prone areas. For modeling and validation, we deployed 70% and 30%, respectively, of the locations of children with asthma. The results of spatial autocorrelation and RF model showed that the criteria of distance to parks and streets as well as PM 2.5 and PM 10 had the greatest impact on asthma occurrence in the study area. Spatial autocorrelation analyses indicated that the distribution of asthma cases was not random. According to receiver operating characteristic results, the RF model had good accuracy (the area under the curve was 0.987 and 0.921, respectively, for training and testing data).
国家哲学社会科学文献中心版权所有