摘要:Humans evolution is distinctly characterized by their exquisite mastery of tools, allowing them to shape their environment in more elaborate ways compared to other species. This ability is present ever since infancy and most theories indicate that children become proficient with tool use very early. In adults, tool use has been shown to plastically modify metric aspects of the arm representation, as indexed by changes in movement kinematics. To date, whether and when the plastic capability of updating the body representation develops during childhood remains unknown. This question is particularly important since body representation plasticity could be impacted by the fact that the human body takes years to achieve a stable metric configuration. Here we assessed the kinematics of 90 young participants (8–21 years old) required to reach for an object before and after tool use, as a function of their pubertal development. Results revealed that tool incorporation, as indexed by the adult typical kinematic pattern, develops very slowly and displays a u-shaped developmental trajectory. From early to mid puberty, the changes in kinematics following tool use seem to reflect a shortened arm representation, opposite to what was previously reported in adults. This pattern starts reversing after mid puberty, which is characterized by the lack of any kinematics change following tool use. The typical adult-like pattern emerges only at late puberty, when body size is stable. These findings reveal the complex dynamics of tool incorporation across development, possibly indexing the transition from a vision-based to a proprioception-based body representation plasticity.