首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities
  • 本地全文:下载
  • 作者:Ahmed A. H. Abdellatif ; Hamad N. H. Alturki ; Hesham M. Tawfeek
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:84
  • DOI:10.1038/s41598-020-79834-6
  • 出版社:Springer Nature
  • 摘要:The use of cellulosic polymers as efficient reducing, coating agents, and stabilizers in the formulation of silver nanoparticles (AgNPs) with antioxidant and antibacterial activity was investigated. AgNPs were synthesized using different cellulosic polymers, polyethylene glycol, and without polymers using tri-sodium citrate, for comparison. The yield, morphology, size, charge, in vitro release of silver ion, and physical stability of the resulting AgNPs were evaluated. Their antioxidant activity was measured as a scavenging percentage compared with ascorbic acid, while their antibacterial activity was evaluated against different strains of bacteria. The amount of AgNPs inside bacterial cells was quantified using an ICP-OES spectrometer, and morphological examination of the bacteria was performed after AgNPs internalization. Cellulosic polymers generated physically stable AgNPs without any aggregation, which remained physically stable for 3 months at 25.0 ± 0.5 and 4.0 ± 0.5 °C. AgNPs formulated using ethylcellulose (EC) and hydroxypropyl methylcellulose (HPMC) had significant (p ≤ 0.05; ANOVA/Tukey) antibacterial activities and lower values of MIC compared to methylcellulose (MC), PEG, and AgNPs without a polymeric stabilizer. Significantly (p ≤ 0.05; ANOVA/Tukey) more AgNPs-EC and AgNPs-HPMC were internalized in Escherichia coli cells compared to other formulations. Thus, cellulosic polymers show promise as polymers for the formulation of AgNPs with antioxidant and antibacterial activities.
国家哲学社会科学文献中心版权所有