首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Functional Alterations of Multidrug Resistance-Associated Proteins 2 and 5, and Breast Cancer Resistance Protein upon Snail-Induced Epithelial–Mesenchymal Transition in HCC827 Cells
  • 本地全文:下载
  • 作者:Kentaro Yano ; Itsuki Todokoro ; Hiroki Kamioka
  • 期刊名称:Biological and Pharmaceutical Bulletin
  • 印刷版ISSN:0918-6158
  • 电子版ISSN:1347-5215
  • 出版年度:2021
  • 卷号:44
  • 期号:1
  • 页码:103-111
  • DOI:10.1248/bpb.b20-00693
  • 出版社:The Pharmaceutical Society of Japan
  • 摘要:Our previous report indicated that Snail-induced epithelial–mesenchymal transition (EMT) enhanced P-glycoprotein (P-gp) function and drug resistance to P-gp substrate anticancer drug in a human non-small cell lung cancer (NSCLC) cell line, HCC827. Our objective is to evaluate the changes in the mRNA and protein expression levels and the functions of multidrug resistance-associated protein (MRP) 2, MRP5 and breast cancer resistance protein (BCRP). Snail-expressing HCC827 cells showed increased mRNA levels of Snail and a mesenchymal marker vimentin, and decreased mRNA levels of an epithelial marker E-cadherin after transduction, indicating that Snail had induced EMT consistent with our previous reports. The mRNA level of MRP2 was significantly decreased, while that of MRP5 remained unchanged, in Snail-expressing cells. The expression levels of MRP2 and MRP5 proteins in whole-cell homogenate were unchanged in Snail-expressing cells, but MRP5 protein showed significantly increased membrane localization. Snail-transduction increased the efflux transport of 5-(and-6)-carboxy-2′,7′-dichlorofluorescein (CDCF), a substrate of MRP2, 3 and 5. This increase was blocked by MK571, which inhibits MRP1, 2, and 5. Toxicity of cisplatin, a substrate of MRP2 and 5, was significantly decreased in Snail-expressing cells. BCRP mRNA and protein levels were both decreased in Snail-expressing cells, which showed an increase in the intracellular accumulation of 7-ethyl-10-hydroxycamptothecin (SN-38), a BCRP substrate, resulting in reduced viability. These results suggested that MRP5 function appears to be increased via an increase in membrane localization, whereas the BCRP function is decreased via a decrease in the expression level in HCC827 cells with Snail-induced EMT.
  • 关键词:Snail;non-small cell lung cancer cell;epithelial-to-mesenchymal transition;multidrug resistance-associated protein (MRP);breast cancer resistance protein (BCRP);membrane localization
国家哲学社会科学文献中心版权所有