首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization
  • 本地全文:下载
  • 作者:Yichong Zhang ; Xin Zheng
  • 期刊名称:Quantitative Economics
  • 电子版ISSN:1759-7331
  • 出版年度:2020
  • 卷号:11
  • 期号:3
  • 页码:957-982
  • DOI:10.3982/QE1323
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:In this paper, we study the estimation and inference of the quantile treatment effect under covariate‐adaptive randomization. We propose two estimation methods: (1) the simple quantile regression and (2) the inverse propensity score weighted quantile regression. For the two estimators, we derive their asymptotic distributions uniformly over a compact set of quantile indexes, and show that, when the treatment assignment rule does not achieve strong balance, the inverse propensity score weighted estimator has a smaller asymptotic variance than the simple quantile regression estimator. For the inference of method (1), we show that the Wald test using a weighted bootstrap standard error underrejects. But for method (2), its asymptotic size equals the nominal level. We also show that, for both methods, the asymptotic size of the Wald test using a covariate‐adaptive bootstrap standard error equals the nominal level. We illustrate the finite sample performance of the new estimation and inference methods using both simulated and real datasets.
  • 关键词:Bootstrap inference; quantile treatment effect.
国家哲学社会科学文献中心版权所有