首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Beyond Tandem Analysis: Joint Dimension Reduction and Clustering in R
  • 本地全文:下载
  • 作者:Angelos Markos ; Alfonso Iodice D'Enza ; Michel van de Velden
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2019
  • 卷号:91
  • 期号:1
  • 页码:1-24
  • DOI:10.18637/jss.v091.i10
  • 出版社:University of California, Los Angeles
  • 摘要:We present the R package clustrd which implements a class of methods that combine dimension reduction and clustering of continuous or categorical data. In particular, for continuous data, the package contains implementations of factorial K-means and reduced K-means; both methods combine principal component analysis with K-means clustering. For categorical data, the package provides MCA K-means, i-FCB and cluster correspondence analysis, which combine multiple correspondence analysis with K-means. Two examples on real data sets are provided to illustrate the usage of the main functions.
  • 关键词:dimension reduction; clustering; principal component analysis; multiple correspondence analysis; K-means.
  • 其他关键词:dimension reduction;clustering;principal component analysis;multiple correspondence analysis;K-means
国家哲学社会科学文献中心版权所有