摘要:The universality of inhibitors is understood as their ability to inhibit several types of corrosion attack: hydrogen sulfide and carbon dioxide corrosion, hydrogen diffusion into metal, development of sulfate-reducing and other types of bacteria, negative impact on the mechanical properties of metals. Indicators of universalism of new inhibitor have been studied. Producer of the inhibiting compositions is Limited Liability Company «INCORGAZ» (S-Petersburg, Russia). The efficacy of the inhibitor in the concentration of 25 - 200 mg/L has been studied with respect to carbon steel in a highly mineralized chloride medium (pH= 6) and NACE medium (5 g/L NaCl, 0.25 g/L CH 3 COOH, pH =3.5) containing H 2 S (50-400 mg/L) and CO 2 (1at) separately and together. The bactericidal properties of the inhibitor were studied with respect to sulfate-reducing bacteria in the Postgate medium. The investigations were carried out by the methods of linear polarization resistance, electrochemical impedance spectroscopy, gravimetry, potentiodynamic polarization. The protective effectiveness of the inhibitor reaches 80% in the presence of CO 2 and 90% in hydrogen sulphide environments. The inhibitor repeatedly reduces the number of sulfate-reducing bacteria and the production of biogenic hydrogen sulfide and inhibits the diffusion of hydrogen into steel.
其他摘要:The universality of inhibitors is understood as their ability to inhibit several types of corrosion attack: hydrogen sulfide and carbon dioxide corrosion, hydrogen diffusion into metal, development of sulfate-reducing and other types of bacteria, negative impact on the mechanical properties of metals. Indicators of universalism of new inhibitor have been studied. Producer of the inhibiting compositions is Limited Liability Company «INCORGAZ» (S-Petersburg, Russia). The efficacy of the inhibitor in the concentration of 25 - 200 mg/L has been studied with respect to carbon steel in a highly mineralized chloride medium (pH= 6) and NACE medium (5 g/L NaCl, 0.25 g/L CH 3 COOH, pH =3.5) containing H 2 S (50-400 mg/L) and CO 2 (1at) separately and together. The bactericidal properties of the inhibitor were studied with respect to sulfate-reducing bacteria in the Postgate medium. The investigations were carried out by the methods of linear polarization resistance, electrochemical impedance spectroscopy, gravimetry, potentiodynamic polarization. The protective effectiveness of the inhibitor reaches 80% in the presence of CO 2 and 90% in hydrogen sulphide environments. The inhibitor repeatedly reduces the number of sulfate-reducing bacteria and the production of biogenic hydrogen sulfide and inhibits the diffusion of hydrogen into steel.