首页    期刊浏览 2025年01月08日 星期三
登录注册

文章基本信息

  • 标题:The Degree of a Finite Set of Words
  • 本地全文:下载
  • 作者:Dominique Perrin ; Andrew Ryzhikov
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:182
  • 页码:1-16
  • DOI:10.4230/LIPIcs.FSTTCS.2020.54
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We generalize the notions of the degree and composition from uniquely decipherable codes to arbitrary finite sets of words. We prove that if X = Yâ^~Z is a composition of finite sets of words with Y complete, then d(X) = d(Y) â<. d(Z), where d(T) is the degree of T. We also show that a finite set is synchronizing if and only if its degree equals one. This is done by considering, for an arbitrary finite set X of words, the transition monoid of an automaton recognizing X^* with multiplicities. We prove a number of results for such monoids, which generalize corresponding results for unambiguous monoids of relations.
  • 关键词:synchronizing set; degree of a set; group of a set; monoid of relations
国家哲学社会科学文献中心版权所有