首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Reachability in Dynamical Systems with Rounding
  • 本地全文:下载
  • 作者:Christel Baier ; Florian Funke ; Simon Jantsch
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:182
  • 页码:1-17
  • DOI:10.4230/LIPIcs.FSTTCS.2020.36
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider reachability in dynamical systems with discrete linear updates, but with fixed digital precision, i.e., such that values of the system are rounded at each step. Given a matrix M â^^ â"S^{d Ã- d}, an initial vector x â^^ â"S^{d}, a granularity g â^^ â"S_ and a rounding operation [â<.] projecting a vector of â"S^{d} onto another vector whose every entry is a multiple of g, we are interested in the behaviour of the orbit ð'ª = âY¨[x], [M[x]],[M[M[x]]],… âY©, i.e., the trajectory of a linear dynamical system in which the state is rounded after each step. For arbitrary rounding functions with bounded effect, we show that the complexity of deciding point-to-point reachability - whether a given target y â^^ â"S^{d} belongs to ð'ª - is PSPACE-complete for hyperbolic systems (when no eigenvalue of M has modulus one). We also establish decidability without any restrictions on eigenvalues for several natural classes of rounding functions.
  • 关键词:dynamical systems; rounding; reachability
国家哲学社会科学文献中心版权所有