首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Lw-CNN-Based Myoelectric Signal Recognition and Real-Time Control of Robotic Arm for Upper-Limb Rehabilitation
  • 本地全文:下载
  • 作者:Benzhen Guo ; Yanli Ma ; Jingjing Yang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-12
  • DOI:10.1155/2020/8846021
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Deep-learning models can realize the feature extraction and advanced abstraction of raw myoelectric signals without necessitating manual selection. Raw surface myoelectric signals are processed with a deep model in this study to investigate the feasibility of recognizing upper-limb motion intents and real-time control of auxiliary equipment for upper-limb rehabilitation training. Surface myoelectric signals are collected on six motions of eight subjects’ upper limbs. A light-weight convolutional neural network (Lw-CNN) and support vector machine (SVM) model are designed for myoelectric signal pattern recognition. The offline and online performance of the two models are then compared. The average accuracy is (90 ± 5)% for the Lw-CNN and (82.5 ± 3.5)% for the SVM in offline testing of all subjects, which prevails over (84 ± 6)% for the online Lw-CNN and (79 ± 4)% for SVM. The robotic arm control accuracy is (88.5 ± 5.5)%. Significance analysis shows no significant correlation ( p = 0.056) among real-time control, offline testing, and online testing. The Lw-CNN model performs well in the recognition of upper-limb motion intents and can realize real-time control of a commercial robotic arm.
国家哲学社会科学文献中心版权所有