首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:A sharp upper bound on the independent 2-rainbow domination in graphs with minimum degree at least two
  • 本地全文:下载
  • 作者:Rana Khoeilar ; Mahla Keibari ; Mustapha Chellali
  • 期刊名称:Computer Science Journal of Moldova
  • 印刷版ISSN:1561-4042
  • 出版年度:2020
  • 卷号:28
  • 期号:3
  • 页码:373-388
  • 出版社:Institute of Mathematics and Computer Science
  • 摘要:An independent 2-rainbow dominating function (I$2$-RDF) on a graph $G$ is a function $f$ from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2\}$ such that $\{x\in V\mid f(x)\neq \emptyset \}$ is an independent set of $G$ and for any vertex $v\in V(G)$ with $f(v)=\emptyset $ we have $% \bigcup_{u\in N(v)}f(u)=\{1,2\}$. The \emph{weight} of an I$2$-RDF $f$ is the value $\omega (f)=\sum_{v\in V} f(v) $, and the independent $2$-rainbow domination number $i_{r2}(G)$ is the minimum weight of an I$2$-RDF on $G$. In this paper, we prove that if $G$ is a graph of order $n\geq 3$ with minimum degree at least two such that the set of vertices of degree at least $3$ is independent, then $i_{r2}(G)\leq \frac{4n}{5}$.
  • 关键词:independent $k$-rainbow dominating function; independent $k$-rainbow domination number;
国家哲学社会科学文献中心版权所有