首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:The Distance Laplacian Spectral Radius of Clique Trees
  • 本地全文:下载
  • 作者:Xiaoling Zhang ; Jiajia Zhou
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-8
  • DOI:10.1155/2020/8855987
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The distance Laplacian matrix of a connected graph G is defined as ℒ G = Tr G − D G , where D G is the distance matrix of G and Tr G is the diagonal matrix of vertex transmissions of G . The largest eigenvalue of ℒ G is called the distance Laplacian spectral radius of G . In this paper, we determine the graphs with maximum and minimum distance Laplacian spectral radius among all clique trees with n vertices and k cliques. Moreover, we obtain n vertices and k cliques.
国家哲学社会科学文献中心版权所有