首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Extra Virgin Olive Oil Phenol Extracts Exert Hypocholesterolemic Effects through the Modulation of the LDLR Pathway: In Vitro and Cellular Mechanism of Action Elucidation
  • 本地全文:下载
  • 作者:Carmen Lammi ; Maria Bellumori ; Lorenzo Cecchi
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2020
  • 卷号:12
  • 期号:6
  • 页码:1723-1737
  • DOI:10.3390/nu12061723
  • 出版社:MDPI Publishing
  • 摘要:This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for total phenols, a recently validated hydrolytic procedure for total hydroxytyrosol and tyrosol, and 1H-NMR analysis in order to assess their secoiridoid profiles. Both of the extracts inhibited in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a dose-dependent manner. After the treatment of human hepatic HepG2 cells (25 µg/mL), they increased the low-density lipoprotein (LDL) receptor protein levels through the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, leading to a better ability of HepG2 cells to uptake extracellular LDL molecules with a final hypocholesterolemic effect. Moreover, both of the extracts regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Unlike pravastatin, they did not produce any unfavorable effect on proprotein convertase subtilisin/kexin 9 (PCSK9) protein level. Finally, the fact that extracts with different secoiridoid profiles induce practically the same biological effects suggests that the hydroxytyrosol and tyrosol derivatives may have similar roles in hypocholesterolemic activity.
  • 关键词:EVOO phenols; HepG2 cells; hypocholesterolemic; PCSK9; LDL receptor EVOO phenols ; HepG2 cells ; hypocholesterolemic ; PCSK9 ; LDL receptor
国家哲学社会科学文献中心版权所有