首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Endogenous Omega (n)-3 Fatty Acids in Fat-1 Mice Attenuated Depression-Like Behavior, Imbalance between Microglial M1 and M2 Phenotypes, and Dysfunction of Neurotrophins Induced by Lipopolysaccharide Administration
  • 本地全文:下载
  • 作者:Minqing Gu ; Yuyu Li ; Haiting Tang
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2018
  • 卷号:10
  • 期号:10
  • 页码:1351-1367
  • DOI:10.3390/nu10101351
  • 出版社:MDPI Publishing
  • 摘要:n-3 polyunsaturated fatty acids (PUFAs) have been reported to improve depression. However, PUFA purities, caloric content, and ratios in different diets may affect the results. By using Fat-1 mice which convert n-6 to n-3 PUFAs in the brain, this study further evaluated anti-depressant mechanisms of n-3 PUFAs in a lipopolysaccharide (LPS)-induced model. Adult male Fat-1 and wild-type (WT) mice were fed soybean oil diet for 8 weeks. Depression-like behaviors were measured 24 h after saline or LPS central administration. In WT littermates, LPS reduced sucrose intake, but increased immobility in forced-swimming and tail suspension tests. Microglial M1 phenotype CD11b expression and concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-17 were elevated, while M2 phenotype-related IL-4, IL-10, and transforming growth factor (TGF)-β1 were decreased. LPS also reduced the expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (Trk B), while increasing glial fibrillary acidic protein expression and pro-BDNF, p75, NO, and iNOS levels. In Fat-1 mice, LPS-induced behavioral changes were attenuated, which were associated with decreased pro-inflammatory cytokines and reversed changes in p75, NO, iNOS, and BDNF. Gas chromatography assay confirmed increased n-3 PUFA levels and n-3/n-6 ratios in the brains of Fat-1 mice. In conclusion, endogenous n-3 PUFAs may improve LPS-induced depression-like behavior through balancing M1 and M2-phenotypes and normalizing BDNF function.
  • 关键词:Fat-1 transgenic mice; n-3 fatty acids; microglial M1 and M2 phenotypes; neurotrophins; BDNF; depression Fat-1 transgenic mice ; n-3 fatty acids ; microglial M1 and M2 phenotypes ; neurotrophins ; BDNF ; depression
国家哲学社会科学文献中心版权所有